

National 5

Physics Self-Evaluation Summary

Unit	Section	No of Pages		Pages		
1	Dynamics	5	1	$1 \rightarrow 5$		
2	Space	3	6	\rightarrow	8	
3	Electricity	6	9	\rightarrow	14	
4	Properties of Matter	3	15	\rightarrow	17	
5	Waves	3	18	\rightarrow	20	
6	Radiation	3	21	\rightarrow	23	

	National 5 Phys		Tra	affic Lig	ght			
No.). ·					Red	Amber	Green
	Dynamics: New						An	Ū
15 16	The acceleration of a body is proportional to the up	es to exp vith cons e.	blain and/or de	termine accelera		\odot		\odot
17	F = m a e.g. Calculate the acceleration of the 5.0kg block shown in the diagram. Problems involving weight, mass and gravitational f W = m g e.g. Calculate the weight of a spaceship, including f W = ? $W =m = 1.3x10^{6} kg W = 2$	equation ymbol F m a a field str ymbol W m g	on: Qua Unbalance accele $f_{un} = 25N - 15N$ m = 0.5 kg = $\frac{F}{m} = \frac{10}{5.0}$ ength use the f Qua wei gravitational rew, of 1.3 × 10 g x 3.7	ntity ced Force ass ration = 10 N (WEST) $a = ?$ = 2.0 m s ⁻² (west following equation ntity ght ass field strength	Unit N kg m) on: Unit N kg N kg ⁻¹	8		0
	Newton's Third Law:	0X1U						
19	If object A exerts a force on object B, then object B exe A person is sitting on a chair:	son.	\odot		3			
20	Explanation of free-fall and terminal velocity in term When an object falls out of an aeroplane The object accelerates as due to gravity will hit terminal velocity	At ter I weigh oppo	ewton's laws. minal velocity nt is equal and site to the air esistance	Forces are balances and object falls at constant veloci		:	:	:

		National 5 Physics Unit 2a								
No.		Space: Space Exploration								
			Red	Amber	Green					
31	The universe is a The universe is galaxies (2 × 10 ² As more inform of the universe.	ation becomes available, scientists refine their theories about the origins and structure Current theories regarding the origin of the universe favour the 'Big Bang' model,	8	٢	0					
		ly 14 billion years ago leading to the continuing formation of stars and galaxies. e use of the following terms:								
		An object that orbits a star/sun but does not undergo nuclear fusion								
		Orbits a star similar to a planet but too small to clear its orbital path of debris								
		A natural satellite that orbits a planet								
		A star at the centre of a solar system								
32	-	An object that orbits sun but does not meet all the requirements to be a planet	$\overline{\mathfrak{S}}$	\odot	\odot					
		A central star orbited by planets	Ŭ		Ŭ					
	Star	Large ball of hot gases undergoing nuclear fusion and emitting EM radiation.								
	Exoplanet	A planet that orbits a star outside our solar system								
	Galaxy	A cluster of gravitationally bound stars, gas and dust clouds.								
	Universe	A universe consists of many galaxies separated by empty space.								
	Satellites have	many benefits:								
33	Geostationary weat cloud cover, image forecasts on TV. Polar orbiting satelli day at the same poin time each day. Three	Weather ForecastingSpace Telescopeseostationary weather satellites are used to photograph oud cover, images are animated and used in weather recasts on TV.Some forms of EM Radiation are blocked by the Earth's atmosphere, but can be detected by telescopes placed in orbit round the Earth. The Hubble Space Telescope in space can observe the whole sky, both night and day. While it is difficult and expensive to launch & maintain a space telescope, they give images far more detailed than those that can be taken on Earth. The James Webb space telescope was launched in 2021 and produces excellent high definition images.								
	Communications Signals are received by a satellite amplified and the retransmitted on a	International Space Station GPS The ISS was initially launched in 1998. It was originally intended to be a laboratory, between itself and at least three GPS satellites in a process called								
	Geostationary	satellites remain in orbit over the same place on Earth		_						
34		period of 24 hours	\odot	\odot	\odot					
		t an altitude of 36000 km.								
	Compared to S									
35	X is closer to Ea		\otimes	\odot	\odot					
	X has a shorter	Period of Orbit								
	X is moving fas	ter								
	 travelling hug 	<i>he challenges of space travel</i> : The distances in space can be aided by attaining a higher velocity using an ion drive These a small, unbalanced force over an extended period of time.								
36	 Spacecra When traincrease manoeuvring 	 travelling large distances using a 'catapult' from a fast moving asteroid, moon or planet. Spacecraft accelerates towards planet/moon/large asteroid but misses it When travelling close to planet/asteroid, object will accelerate due to force of gravity and increase its velocity and can change the direction of travel. manoeuvring a spacecraft in a zero friction environment, possibly to dock with the ISS maintaining sufficient energy to operate life support systems in a spacecraft, with the possible 								
	-	ing solar cells with area that varies with distance from the Sun.								
		setting to and landing on another planet is complicated by having a return journey.								

	l .				r	,					
	2	d with manned space exploration:									
		red to get into orbit and the heavie	er the spacecraft the more fuel								
	needed on take-off and increas										
27		els of radiation and cosmic rays un		$\overline{\mathfrak{S}}$		\odot					
57	 pressure differential between 	the vacuum of space and inside sp	acecraft can lead to accidents.	\odot							
	 re-entry through an atmosphe 	re will lead to very high temperatu	ares on spacecraft surface.								
	 very small objects moving a high 	sh speed can damage spacecraft.									
	• extremes of temperature (hot	in sun, cold in shade) must be wor	ked into the design of spacecraft								
	Knowledge of Newton's Laws an	d their application to space travel,	, rocket launch and landing.								
		Once a spacecraft is moving in the vac	cuum of space it will continue to								
	"An object will remain at rest	move and will not slow down.									
	or continue to travel with	• Fuel will accelerate the spacecraft									
	constant speed, and in the	the engines are switched off the ve									
	same direction, unless acted	 Thrust must be provided to slow on there is no frictional force to assist 	-								
	upon by an unbalanced force"	there is no frictional force to assist									
20	"The acceleration of a body is			\odot	\odot	\odot					
38	proportional to the	 where Unbalanced Force = T 			\bigcirc	\odot					
		Large quantities of fuel are required t									
	· · ·	of the spacecraft will decrease as the	fuel is used up. This will increase								
	· · · · · · · · · · · · · · · · · · ·	the acceleration of the spacecraft.									
		Releasing or ejecting any part of a spa opposite force on the remaining space									
	jj	The forces will be balanced and the fo									
		balanced by an equal force on the spa	-								
		This will cause an acceleration in the s									
		velocity of the spacecraft.									
		ield strength can be worked out u									
	Mass, in kg, is the same	regardless of the gravitational field	d strength								
	W =	m ×	g								
	Weight	Mass Gravita	tional Field Strength								
	(N)	(kg)	(N kg ⁻¹)								
29	As gravitational Field Strength is	different in different locations acr	ross the universe, care must be	$\overline{\mathfrak{S}}$		\odot					
	taken to use the correct value of										
		dual with mass 71kg on a) Earth, b) Moon and c) Mars.								
	a) Earth (g= 9.81 N kg ⁻¹)	b) Moon (where g=1.6 N kg ⁻¹)	c) Mars (where g = 3.7 N kg ⁻¹)								
	W = mg	W = mg	W = mg								
	= 71 x 9.81	= 71 x 1.6	= 71 x 3.7								
	= 697 N	= 114 N	= 263 N								

	National 5 Physics Unit 2b								
No.	Space: Cosmology		Red	Amber	Green				
40	Use of the term 'light year' and conversion between light years and metres. A light year is the distance that light/EM Radiation travels in one year. A light year can be calculated in metres: d = v x t d = ? $d = 3.0x10^8 x 1x365.25 x24 x60 x60 t = 1 year = 1x365.25x24x60x60 s$ $d = 9.47x10^{15} m$ NB: We use the conversion 1 year = 365.25 days so that leap years are taken into account.		8		0				
41	 The 'Big Bang' theory is the theory for the origin of the universe. the universe having originated from an extremely hot common dense origin Big Bang was the start of the universe as a rapid expansion almost all galaxies are moving away from us showing the universe is expanding If the universe ever stops expanding then it may collapse (Big Crunch) 		8		:				
42	The approximate estimated age of the universe is 13.8 billion years (13,800,000,000 years)		$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot				
43	The whole electromagnetic spectrum is used to obtain information about astronomical objects.Gamma-ray Astronomy Gamma rays are emitted by pulsars, black holes, active galaxies and unidentified objects responsible for high energy gamma ray bursts.X-ray Astronomy Arrays are emitted by incredibly hot gases and objects with temperatures of over one million kelvin (K).Ultraviolet Astronomy Ultraviolet radiation is mostly emitted by very hot young stars, including the sunVisible Spectrum Astronomy Visible light is able to pass through the atmosphere, provided the sky is clear of clouds. Visible light is distorted by the atmosphere. Galaxies, star clusters, 		\odot	÷	÷				
44	Identification of continuous and line spectra. Continuous Spectrum No lines on a spectrum of colours Line Emission Spectrum Colour lines on Black Background Line Adsorption Spectrum Black lines on a coloured background		8	÷	0				
45	Spectral data of known elements can identify elements present in stars. Star Z Contains Hydrogen and Helium Contains Hydrogen and Helium		$\overline{\mathbf{S}}$		٢				

	National 5 Physics Unit 3a	Tra	ffic Li	ght
No.	Electricity: Electric Charge Carriers	Red	Amber	Green
16		 $\overline{\mathbf{S}}$	▼	0
46	Electrical current is defined as the electric charge transferred per unit time. Calculations involving charge, current and time use the following equation:	\odot	θ	0
	$\mathbf{Q} = \mathbf{I} \mathbf{t}$ $\begin{array}{c c} \mathbf{Q} = \mathbf{I} \mathbf{t} \\ \hline \mathbf{Q} = \mathbf{I} \mathbf{t} \\ \hline \mathbf{Q} = \mathbf{I} \mathbf{t} \end{array}$ $\begin{array}{c c} \mathbf{Q} = \mathbf{I} \mathbf{t} \\ \hline \mathbf{Q} = \mathbf{I} \mathbf{t} \\ \hline \mathbf{Q} = \mathbf{I} \mathbf{t} \end{array}$	0	((
47	e.g. During one lightning strike 24 C of charge is transferred to the ground in 0.0012 s. Calculate the average current during the lightning strike. Q = 24 C I = ? t = 0.0012 s	8		3
	Q = Ixt : 24 = Ix0.0012 : I = $\frac{24}{0.0012}$ = 20000 A			
48 49	Alternating Current and Direct Current are different in nature and can be identified on an oscilloscope or datalogging computer. a.c. Alternating Current d.c. Direct Current In alternating current d.c. Direct Current In alternating current In direct current • the direction of electrons in current changes back and forth at regular intervals In direct current • the size of the current varies with time and is not constant • gives a constant trace on oscilloscope as shown below • gives an oscilloscope trace as below Image: Constant trace on oscilloscope as shown below	3	:	\odot
	National 5 Physics Unit 3b	Tra	iffic Li	
No.	Electricity: Potential Difference (Voltage)	Red	Amber	Green
50	A charged particle experiences a force in an electric field.	$\overline{\mbox{\scriptsize (s)}}$	\odot	\odot
51	Path of a charged particle is worked out using opposite charges attract and like charges repel: a) between two oppositely charged parallel plates If particle P is positive • Plate Q must be negative if particle P is attracted to it • Plate R must be positive if particle P is deflected away If particle P is negative • Plate Q must be positive if particle P is attracted to it • Plate Q must be positive if particle P is attracted to it • Plate Q must be positive if particle P is deflected away b) near a single point charge, between two oppositely charged points or between two like charged points. path taken by particle • Single point charge Q must be negative for particle to be attracted to it • Single point charge R must be positive for particle to be repelled by it • Single point charge R must be positive for particle to be repelled by it	3	:	©
52	 Voltage and potential difference is a measure of the energy given to the charge in a circuit. the voltage of a battery is the number of joules of energy it gives to each coulomb of charge. A cell or battery has a voltage when not connected in a complete circuit Electrons are free to move through a circuit made of conductor material 	$\ddot{\odot}$:	3

Set Cell Image: the source the positive side of cell point together account the positive side of cell point together account together positive side of cell point together account toge		Name	Symbol	Function	Application				
Soldery Image <		cell	⊣⊩		Portable devices				
simp Image: Converting electrical energy to light energy. non-onlighting switch Image: Converting electrical energy to light energy. isght switch switch Image: Converting electrical energy to light energy. isght switch resistor Image: Converting electrical energy to light energy. Circuit protection fram overload variable resistor Image: Converting electrical affreence. Must be placed in a energy energies and in the circuit. Electrician's multimeter voltmeter Image: Converting electrical affreence. Must be placed in series to electrical affreence. Must be placed in series to electrician's multimeter ohrmmeter Image: Converting electrical energy into kinetic energy electrical energy into kinetic energy electrical energy into an electrical site electrical and site electrical energy into kinetic energy electrical energy into an electrical site electrical energy into an electrical energy into an electrical site electrical energy into an electrical site electrical energy into an electrical energy into an electrical energy into an electrical energy into an electrical site electrical energy into an ele		battery	+ ⊢		Portable devices				
SWICh Image: Converting the end of the end		lamp	$-\otimes$ -		Room lighting				
7888.007 Image: Components from too much current. Circuit protection from overload variable resistor A resistor, the resistance of which can be brightness of a lamp. voltmeter Image: Components from too much current. Used as a dimmer switch to raise or lower the brightness of a lamp. voltmeter Image: Components from too much current. Used as a dimmer switch to raise or lower the brightness of a lamp. ammeter Image: Component is from too much current. Used as a dimmer switch to raise or lower the brightness of a lamp. Ohmmeter Image: Component is component in a circuit. The cell required. Electrician's multimeter LED Image: Component is component flows but only allows current to flow how called these seese put on a lamp. S8 motor Image: Converts sectical energy into an electrical many but called these sectical energy into an electrical signal. Ioudspeaker Image: Converts sectical energy into sound energy. Loudspeaker at a concert ioudspeaker Image: Converts sectical energy into sound energy. Loudspeaker at a concert ioudspeaker Imale many sectical energy into sound energy. </td <td></td> <td>switch</td> <td></td> <td></td> <td>Light switch</td> <td></td> <td></td> <td></td> <td></td>		switch			Light switch				
voltable Fessiol voided in the circuit. brightness of a lamp. voltmeter ····································		resistor			Circuit protection from overload				
voltmeter -V in parallel to measure the difference in electrician's multimeter ammeter -W Mexical potential between two points. Electrician's multimeter ammeter -W Mexical potential between two points. Electrician's multimeter Ohmmeter -O Ohmmeters measures the resistance in a component in a circuit. No cell required. Electrician's multimeter LED -W Emits light when a current flows but only allows current to flow no ed direction. Requires less energy than a lamp. Car lights motor -W Converts electrical energy into an electrical signal. Microphone at a concert loudspeaker -O Converts electrical energy into sound energy. Loudspeaker at a concert photovoltaic cell -W Converts electrical energy into an electrical mergy consecure a circuit. More light energy consecure a concert photovoltaic cell -W Converts electrical energy into an electrical energy into		variable resistor	—Ź—						
ammeter Image: Converte State in a circuit. No cell required. Electrician's multimeter Ohmmeter Image: Converte State in a circuit. No cell required. Electrician's multimeter LED Image: Converte State in a circuit. No cell required. Car lights motor Image: Converte State in a circuit. No cell required. Car lights motor Image: Converte State in a circuit. No cell required. Electrician's multimeter image: Converte State in a circuit. No cell required. Car lights motor Image: Converte State in a circuit. No cell required. Car lights motor Image: Converts sound energy into kinetic energy Electric car ioudspeaker Image: Converts sound energy into sound energy. Loudspeaker at a concert ioudspeaker Image: Converts light energy to electrical energy, can be used as the paper source in a circuit. We light will mean a greater ad. Calculator fuse Arise is a safety device - the metal core will Plugs on devices diode Only allows current to flow in one direction. Plugs on devices thermistor The resistance of a thermistor will increases as the temperature increases. Temperature sensor in greenhouse LDR Can be used to control a circuit. The resistance or lighturent(where there ener		voltmeter		in parallel to measure the difference in	Electrician's multimeter				
Ohmmeter Image: Component in a circuit. No cell required. Electrician's multimeter LED Image: Entits light when a current flows but only allows current to flow in one direction. Requires less energy than a lamp. Car lights 58 motor Image: Converts electrical energy into kinetic energy by turning. Electric car microphone Image: Converts sound energy into an electrical signal. Microphone at a concert loudspeaker Image: Converts electrical energy into sound energy. Loudspeaker at a concert photovoltaic cell Image: Converts electrical energy. can be used as the grower source is a safety device – the metal core will Calculator diode Only allows current to flow in one direction. Plugs on devices diode Only allows current to flow in one direction. Electrical energy. LDR Can be used to store electrical energy. can be used to create a simple timing circuit, or in the flash in a camera. Temperature sensor in greenhouse LDR Can be used to control a circuit. The resistance of a thermistor will increases as the temperature increases. Temperature sensor for light/dark relay Meteremistor user sensor in sign some for high current device Safe switching mechanism for high current device thermistor Image: Control a control a circuit. The resistance of the present spects freace fo		ammeter	—(A)—	•	Electrician's multimeter				
128 LED Allows current to flow in one direction. Requires less energy than a lamp Car lights 58 motor O Converts electrical energy into kinetic energy by turning. Electric car microphone O Converts sound energy into an electrical signal. Microphone at a concert Imicrophone at a concert loudspeaker Imicrophone O Converts electrical energy into sound energy. Converts electrical energy into sound energy. Loudspeaker at a concert photovoltaic cell Imicrophone Imicrophone Converts light energy to electrical energy. Converts light energy to electrical energy. Loudspeaker at a concert fuse A fuse is a safety device – the metal core will melt when too much current is flowing in the circuit. Plugs on devices diode Only allows current to flow in one direction. Imicrophone LDR Can bused to control a circuit. The resistance of a thermistor will increase as the temperature increases. Temperature sensor for light/dark relay Can bused to control a circuit. The resistance of a statistic and the substantiation and the substant and thestimation and the substant and the substand the substant and the		Ohmmeter	- <u>Ω</u> -	U Flectrician's multimeter					
motor w by turning. b		LED		allows current to flow in one direction.	Car lights				
microphone signal. Microphone at a concert loudspeaker Image: Converts electrical energy into sound energy. Loudspeaker at a concert photovoltaic cell Image: Converts light energy to electrical energy, can be used as the power source in a circuit. More light will mean a greater p.d. across the cell. Calculator fuse Image: Converts light energy to electrical energy, can be used as the power source in a circuit. More light will mean a greater p.d. across the cell. Calculator fuse A fuse is a safety device – the metal core will melt when to much current is flowing in the circuit. Plugs on devices diode Only allows current to flow in one direction. Plugs on devices capacitor Used to store electrical charge, can be used to create a simple timing circuit, or in the flash in a camera. The resistance of a thermistor will increase as the temperature lincreases. LDR Can be used to control a circuit. The resistance goes down as the light increases. Outdoor lighting sensor for light/dark relay An electronically operated with: tide to protect operaters from high energy high a law current specifies as a switch when a voltage of 0.7 V is Safe switching mechanism for high current device	58	motor	— M —		Electric car	6	$\overline{\ensuremath{\mathfrak{S}}}$	☺	\odot
photovoltaic cell Image: Converts light energy to electrical energy, can be used as the parces the cell. Calculator fuse Image: Converts light energy to electrical energy, can be used as the cell. Calculator fuse A fuse is a safety device - the metal core will meta when too much current is flowing in the circuit. Plugs on devices diode Image: Only allows current to flow in one direction. Plugs on devices Capacitor Used to store electrical charge, can be used to create a simple timing circuit, or in the flash in a camera. The resistance of a thermistor will increase as the temperature increases. LDR Can be used to control a circuit. The resistance goes down as the light increases. Outdoor lighting sensor for light/dark relay An electronically operated awitch. Used to pretict operators frem hight uses to a which on a high current/bellage Safe switching mechanism for high current device transistor Acts as a switch when a voltage of 0.7 V is Acts as a switch when a voltage of 0.7 V is		microphone			Microphone at a concert				
photovoltaic cell Image: source in a circuit. More light will mean a greater p.d. arrows the cell. Calculator fuse A fuse is a safety device – the metal core will method to much current is flowing in the circuit. Plugs on devices diode Image: Only allows current to flow in one direction. Plugs on devices Capacitor Image: Only allows current to flow in one direction. Image: Only allows current to flow in one direction. Capacitor Image: Only allows current to flow in one direction. Image: Only allows current to flow in one direction. thermistor Image: Only allows current to flow in one direction. Image: Only allows current to flow in one direction. thermistor Image: Only allows current to flow in one direction. Image: Only allows current to flow in one direction. thermistor Image: Only allows current to flow in one direction. Image: Only allows current to flow in one direction. LDR Image: Only allows current supply to witch on a high current/only age: Only allows current supply to witch on a high current/only age: Only allows current supply to witch on a high current/only device transistor Image: Only allow current supply to witch on a high current/only device transistor Image: Only allow current supply to witch on a high current/only device transistor Image: Only allow current supply to witch on a high current/only devic		loudspeaker		Converts electrical energy into sound energy.	Loudspeaker at a concert				
fuse melt when too much current is flowing in the circuit. Plugs on devices diode Only allows current to flow in one direction. Capacitor Used to store electrical charge, can be used to create a simple timing circuit, or in the flash in a camera. thermistor The resistance of a thermistor will increase as the temperature sensor in greenhouse LDR Can be used to control a circuit. The resistance goes down as the light increases. outdoor lighting sensor for light/dark relay An electronically operated switch. Used to protect operators from high current willy to switch on a high current/voltage device transistor Acts as a switch when a voltage of 0.7 V is		photovoltaic cell	- #-	power source in a circuit. More light will mean a greater p.d.	Calculator				
Capacitor Used to store electrical charge, can be used to create a simple timing circuit, or in the flash in a camera. thermistor The resistance of a thermistor will increase as the temperature increases. LDR Can be used to control a circuit. The resistance goes down as the light increases. relay An electronically operated switch. Used to protect operators from high current/voltage supply. Acts as a switch when a voltage of 0.7 V is		fuse		melt when too much current is flowing in the	Plugs on devices				
Capacitor Image: create a simple timing circuit, or in the flash in a camera. thermistor Image: create a simple timing circuit, or in the flash in a camera. thermistor Image: create a simple timing circuit, or in the flash in a camera. thermistor Image: create a simple timing circuit, or in the flash in a camera. thermistor Image: create a simple timing circuit, or in the flash in a camera. thermistor Image: create a simple timing circuit, or in the flash in a camera. LDR Image: create a comparison of a thermistor will increases. LDR Image: create a comparison of a circuit. The resistance goes down as the light increases. Outdoor lighting sensor for light/dark relay Image: created switch. Used to protect operators from high current/voltage supply to switch on a high		diode		Only allows current to flow in one direction.					
thermistor the temperature increases. Temperature sensor in greenhouse LDR Can be used to control a circuit. The resistance goes down as the light increases. Outdoor lighting sensor for light/dark relay Image: An electronically operated switch. Used to protect operators from high current, by using a low current supply to switch on a high current/voltage device Safe switching mechanism for high current device transistor Acts as a switch when a voltage of 0.7 V is Acts as a switch when a voltage of 0.7 V is		Capacitor	- -	create a simple timing circuit, or in the flash in					
LDR goes down as the light increases. Outdoor lighting sensor for light/dark relay An electronically operated switch. Used to protect operators from high current, by using a low current supply to switch on a high current/voltage Safe switching mechanism for high current device transistor Acts as a switch when a voltage of 0.7 V is Acts as a switch when a voltage of 0.7 V is		thermistor	->		Temperature sensor in greenhouse				
relay relay relay Image: supply Image: supply Image: supply <t< td=""><td></td><td>LDR</td><td></td><td></td><td>Outdoor lighting sensor for light/dark</td><td></td><td></td><td></td><td></td></t<>		LDR			Outdoor lighting sensor for light/dark				
		relay		currents, by using a low current supply to switch on a high current/voltage					
		transistor		-					

	National 5 Phys		Tra	affic Li	ght		
No.	Electricity: Elect				Red	Amber	Green
63	Power is defined as electrical energy per unit time.				8		(i)
05	Use of an appropriate relationship to solve problem	s involving		and time			•
		Symbol P E t	Unit W J S				
64	e.g. The hot water dispenser takes 26 s to heat enough w power rating of 3.5kW, calculate the energy supplied to the P = 3.5kW = 3500W E = ? $P = \frac{E}{t} \therefore 3500 = \frac{E}{26} \therefore E$	t = 26s	8		٢		
65	Knowledge of the effect of potential difference (vol power developed across components in a circuit.	tage) and r	esistance on the	e current in and			
66	Calculations involving power, potential difference (v circuits can be solved using the following three equ $P = I V$ $P = I^2$ WhereP = Power (W)I = current (A)An electric iron operates at 230 V a.c. The power rating of the iron is 1750W. Calculate the current in the iron when it is operating. P = 1750W I = ? V = 230VIn a series circuit, a 0.2/ flowing through a resist resistance of 15 Ω . Calculate the current in the iron when it is operating. P = 1750W I = ? V = 230VP = I^2 P = I^2 P = (0.2)^2P = IV I = 7.61AP = I^2 P = 0.6W	A current is tor with a ulate the R = 159 R = 159	P : Itage (V) I A kettle uses 230 920 W. The resis appliance is? Ω P = 920 W P = $\frac{V^2}{R}$ ∴ 920 ∴ R	$= \frac{V^2}{R}$ $R = resistance (\Omega)$ $DV a.c. and is rated at tance of this R = ? \qquad V = 230 V D = \frac{(230)^2}{R}$	8		٢
67 68	 The appropriate fuse must be used depending on th 3 A fuse should be selected for most applian 13 A fuse for appliances rated over 720 W. 		ating of an elect		\otimes		٢

	Nation	National 5 Physics Unit 4b								
No.		-	cific Latent Heat		Red	Amber	Green			
73 74	 Different materials require different quant Different quantities of heat are required to from solid to liquid (fusion) e.g. s from liquid to gas (vaporisation) e.g. s 	change the state pecific latent heat o pecific latent heat o	of fusion of water = 3.34×10^5 J of vaporisation of water = 22.6×10^5 J	•	::	:	٢			
75	Calculations involving mass, heat energy a $E_{h} =$ Heat Energy (J) e.g. What is the minimum amount of energy steam at the same temperature? $E_{h} =$ $E_{h} =$ $E_{h} =$	Mass (kg)	ل Specific latent heat (J kg ⁻¹)	into	3	\odot	٢			

	The Boyle's Law relationship of p	essure and volume at a constant temperatu	re is represented by:							
	$p_1 V_1 = p_2 V_2$	L.0x10 ⁵ Pa $V_1 = 4.0x10^{-4} m^3$ $V_2 = 1.6x10^{-4} m^3$	same							
81a	$p_1 v_1 - p_2 v_2$ $p_2 =$	$V_2 = 1.6 \times 10^{-4} \text{ m}^3$	temperature	$\overline{\mbox{\scriptsize ($)}}$	☺ ☺					
	$p_1V_1 = p_2V_2 \therefore 1.0x10^5 x 4.0$	$10^{-4} = p_2 \times 1.6 \times 10^{-4} \therefore p_2 = \frac{1.0 \times 10^5 \times 4}{1.6 \times 10^{-5}}$	$\frac{1.0 \times 10^{-4}}{0^{-4}}$ = 2.5 × 10 ⁵ Pa							
	The Gay-Lussac's Law relationshi	o of pressure and temperature at a constant	volume is represented by:							
	$p_1 p_2 p_1$	$T_1 = 150 \text{kPa}$ $T_1 = 27^{\circ}\text{C} = 300$	IK same							
81b	$T_1 = T_2$	$_1 = 150$ kPa $T_1 = 27^{\circ}C = 300$ $_2 = ?$ $T_2 = 47^{\circ}C = 330$	K volume	(3)	∷ :					
010				Ø						
	$\frac{p_1}{T_1} = \frac{p_2}{T_2} \therefore -$	$\frac{150}{300} = \frac{p_2}{330} \therefore p_2 = \frac{150 \times 330}{300}$	- = 165 kPa							
	The Charles' Law relationship of	olume and temperature at a constant temp	erature is represented by:							
	$V_1 V_2 \forall$	= 0.3 m^3 T ₁ = 20°C = 293	K same							
81c	$\overline{T_1} = \overline{T_2}$ V	= 0.3 m^3 $T_1 = 20^{\circ}\text{C} = 293$ = ? $T_2 = 50^{\circ}\text{C} = 323$	K pressure	(3)	∷ :					
010				Ø						
	$\frac{\mathbf{v}_1}{\mathbf{T}_1} = \frac{\mathbf{v}_2}{\mathbf{T}_2} \therefore -$	$\frac{0.3}{293} = \frac{V_2}{323} \therefore V_2 = \frac{0.3 \times 323}{293}$	$- = 0.33 \text{ m}^3$							
		re are linked by the following relationship:								
	pV = constant	$5.0x10^5$ Pa $V_1 = 2.5 \text{ m}^3$ T P $V_2 = 5.0 \text{ m}^3$ T	₁ = 27°C = 300K							
	T $p_2 =$	$V_2 = 5.0 \text{ m}^3$ T	₂ = 54°C = 327K							
81d	p_1V_1 6.0x10 ⁵ x 2.5									
	$\frac{p_1 V_1}{T_1} = \text{constant} \therefore \frac{6.0 \times 10^5 \times 2.5}{300} = 5000 = \text{constant}$									
	p_2V_2 $p_2 \times 5$	0 5000 x 327	0.0.405.0							
	$\frac{p_2 V_2}{T_2} = \text{constant} \therefore \frac{p_2 \times 5.0}{327} = 5000 \therefore p_2 = \frac{5000 \times 327}{5.0} = 3.3 \times 10^5 \text{ Pa}$									
	Description of experiments to verify the pressure–volume law (Boyle's law), the pressure–temperature law (Gay-Lussac's law) and the volume–temperature law (Charles' law).									
	a) Pressure-Volume Law b) Pressure-Temperature Law c) Volume-Temperature Law									
	(Boyle's Law)	(Gay-Lussac's Law)	(Charles' Law)							
	Watch this BBC Bitesize <u>video</u>	The bea	h this BBC Bitesize <u>video</u> ker is heated and the volume in							
	The piston on the syringe can be used the change the volume of the gas in the	and the pressure is measured on the	aled container should start to nd. The piston moves up the							
	syringe. The pressure inside the syringe measured by the pressure sensor.	pressure sensor at a series of contain	er to equalised pressure inside							
	The volume of the gas in the syringe	in Kolvin) As the volume is fixed in The volu	nd outside the container. mes in the sealed container and							
	could be halved and the pressure sense would measure the resulting doubling	f the sealed container, the ratio of measur	ed against the temperatures in							
82	the pressure in the syringe.	pressure/temperature should be constant.	and the ratio of ^{volume} / _{temperature} should be constant.	$\overline{\mbox{\scriptsize (s)}}$	\odot					
		pressure sensor	thermometer							
	Pressure	Temperature sensor								
	tubing sensor		water							
		sealed container with gas inside	syringe							
			trapped							
	piston syringe	beaker	air sealed container							
			↑ beaker							
		HEAT	HEAT							

	National 5 Physics Unit 5a	Tra	ffic Li	ght
No.		Red	Amber	Green
	Waves: Parameters & Behaviours	Re	ЧM	Gre
83	Waves transfer energy. The higher the amplitude of the wave, the more energy is transferred			
	Definition of transverse waves. Transverse direction of Waves direction of vibration direction of travel			
010	Transverse waves have the direction of vibration at right angles to the direction of wave travel	_		
85a	e.g. water waves and electromagnetic waves. frequency (f)	$\overline{\mbox{\scriptsize ($)}}$	\bigcirc	\odot
	number of waves that pass a point in one second. Wavelength (λ) wavelength (λ) wavelength (λ) horizontal distance between any two corresponding points on adjacent waves. multitude amplitude wavelength (λ) vertical distance measured from the middle of the wave to the multitude			
	top or to the bottom. Independent of wavelength $V = V = V$			
84b 85b	Longitudinal Waves Wavelength (λ)	$\overline{\mathbf{S}}$		٢
	Longitudinal waves have the direction of the vibration in the same direction as the direction of the wave e.g. sound waves.			
	 The wavelength can be calculated from the number of complete waves over a distance. 			
	Speed, distance and time problems can be solved using the following equation:			
86a	$v = \frac{d}{t}$ $\frac{symbol}{v} = \frac{Quantity}{m s^{-1}}$ $\frac{v}{d} = \frac{d}{distance}$	$\overline{\mathbf{O}}$		\odot
	t time s Frequency, number of waves and time problems can be solved using the following equation:			
86b	$f = \frac{N}{t}$ $\frac{Symbol}{N} = \frac{V}{T}$ $\frac{Symbol}{N} = \frac{V}{T}$ $\frac{Symbol}{N} = \frac{V}{T}$	3		٢
	Speed, frequency and wavelength problems can be solved using the following equation:			
87c	$v = f \lambda \qquad \qquad \frac{symbol}{v} \frac{Quantity}{speed} \frac{Unit}{m s^{-1}}$ $\frac{v}{f} \frac{frequency}{\lambda} \frac{Hz}{wavelength} m$	3		\odot
	Time and frequency problems can be solved using the following equation:			
87d	$t = \frac{1}{f}$ $\frac{Symbol}{t} = \frac{Quantity}{t}$ $\frac{Vnit}{t}$ $\frac{Vnit}{f}$ $\frac{Vnit}{f}$	$\overline{\mathbf{O}}$:	\odot
	Diffraction occurs when waves pass through a gap or around an object.			
	 Waves which have a longer wavelength produce more diffraction than waves with a 			
87	shorter wavelength.			
87 88 89	Wavelength must be same before and after barrier. Wave curl at the corners after barrier	$\overline{\ensuremath{\mathfrak{S}}}$		\odot
	Long Wave diffraction Short Wave diffraction			

	National 5 Physics Unit 5b										Tra	ffic L	Ŭ	
No.		Wa	aves: E	lectro	magne	etic	Spect	trι	ım			Red	Amber	Green
	Knowledge	of the relative	e frequenc	y and wav	elength of	band	ds of the	elec	tromagnet	ic spectrum.				
	EM Type	Gamma	X-Ray	Ultra-vio	et Visil	ble	Infra-Re	ed	Microwave	Radio & TV				
	Energy	High	•							Low			0	
90	Frequency	High	•	► Low								\otimes	:	\odot
	Wavelengt	h Low	•							High				
	Knowledge spectrum.	e of typical sou	rces, detec	ctors and a			each bar	nd ir	the electr	omagnetic				
	ЕМ Туре				1									
	Sources	Nuclear decay, Cosmic rays, Some stars.	Fast electrons hitting metal, Some stars.	Ultra-hot obje Sparks, Stars	tts, Very hot o Starlig		All hot obje Starlight		Electrical Circuits Some stars	Electrical Circuits, Some stars				
91	Detectors	Photographic film, GM Film	Photographic film	Causes Fluorescenc film	e, Photograpi		Black-bul thermome Heat-Sensit paper	ter,	aerial	aerial		8		\odot
	Applications	Killing Cancer Cells, Sterilising equipment	Medical imaging of bones	Sunbeds, Killing bacte	Seein Photogra Lasei	aphy,	"Night" vision, Remote Controls		Cooking, Mobile Phone signals	Communications, Television Signals				
	Knowledge	e that all radiat	ions in the	electrom	agnetic sp	ectru	m are tra	nsv	erse and tr	avel at the				
	speed of lig	ght.												
	All forms o	f Electromagn	etic Radiat	ion are tra	nsverse w	vaves								
	Gamm	a X-Ray	Ultra-	violet	Visible	Inf	fra-Red	М	icrowave	Radio & TV			0	
92 /	All travel a	t the speed of	light (3.0x:	10 ⁸ m s ⁻¹)								8		©

	National 5 Physics Unit 5					Traffic Light			
No.	Waves: Refraction of Light					Amber	Green		
93	Refraction occurs when waves pass from one medium to another. e.g. glass into air, air into water, air into perspex plastic) 😐	\odot		
	Description of refraction in terms of change of wave speed, change in wavelength and change of direction (where the angle of incidence is greater than 0°), for waves passing into both a more dense and a less dense medium.								
		Less Dense medium		More Dense medium					
	Property	↓ More Dense Medium e.g. air → glass		↓ Less Dense Medium e.g. glass → air					
94	Wave Speed	deceases		increases	- 6		\odot		
	Change in Wavelength	deceases		increases					
	Change of Direction	bends towards the normal		bends away the normal					
	Frequency	same		same					
	Colour of Light	same		same					
	Identification of the normal, angle of incidence and angle of refraction in ray diagrams showing								
95		air angle on ncidence	Per	angle on refraction			٢		

	National 5 Physics Unit 6a					ght
No.		Red	Amber	Green		
96 98	Type of Radiation Nature Mass Charge Deflection in Electric Field	Alpha α Helium Nucleus Heavier than Beta Positively Charged Attracted to Negative Pla Repelled from Positive Pla Piece of paper/few cm a	e Repelled from Negative Plate	8	۲	٢
97 102	Stopped By Ionisation is the pro Neutral atoms for by <i>losing</i> o Ionising radiation ca Exposing ce by ionising Cells can be A person's o	8		0		
99 100	• A person's exposure to radiation must be measured to ensure their safety Activity is the number of nuclear disintegrations per second (or other unit of time) Activity, number of nuclear disintegrations and time problems can be solved using the equation: $A = \frac{N}{t} \qquad \frac{\frac{Symbol}{A} & \frac{Quantity}{V} & \frac{Unit}{Bq}}{N} \\ e.g. Calculate the activity of a radioactive source where 2400 atoms decay in 5 minute. A = \frac{N}{t} = \frac{2400}{5x60} = 8 Bq$					0
101	There are many sou radon g cosmic r	\odot		\odot		
103a	Absorbed dose can be calculated from energy and mass. $D = \frac{E}{m} \qquad \frac{\frac{Symbol}{D} + \frac{Quantity}{D} + Q$					0
103b	Equivalent dose car • The weighti H : e.g. Calculate the equivalent of alpha particl	8	۲	0		

	Use of an appropriate relationship	o to solve prob	iems involving e	quivalent dos	se rate, equivale	nt			
	dose and time.								
	Ц	Symbol	Quantity		Unit				
	<u> </u>	Ĥ	Equivalent Dose		Sv h ⁻¹				
	· · · · · · · · · · · · · · · · · · ·	Н	Dose Equival	ent	Sv			-	~
104	C	t	time		h		$\overline{\mbox{\scriptsize (i)}}$	\odot	\odot
	e.g. Calculate the equivalent dose	received by a	passenger on a f	flight to New	York if the flight				
	takes 8 hours and the cosmic radiation received had a equivalent dose rate of 7 μ Sv h ⁻¹								
	. н	н							
	$\dot{\mathrm{H}} = \frac{\mathrm{H}}{\mathrm{t}}$ \therefore 7µSv h ⁻¹ =	=	$H = 7\mu S^{\prime}$	v h⁻¹ x 8h	= 56 µSv	/			
	t '	8h	•		4				
	Comparison of equivalent dose due to a variety of natural and artificial sources.								
	Artificial sources account for	or about 15 per	cent of the avera	age backgrour	nd radiation dose				
	Natural Sources		Artifi	cial Sources					
4.05	cosmic rays		medical a	nd dental X-ra	ays		\odot	\odot	\odot
105	radon gas	radia	tion used in med	dical diagnosi	s or treatment		$\overline{\mbox{\scriptsize ($)}}$	☺	\odot
	rocks and building materials	radio	active fallout fro	om nuclear w	eapons testing				
	food and drink		oactive waste fro						
	water & air		industrial mea						
	Equivalent dose rate and exposure	e safety limits	for the public an	d for workers	in the radiation				
	industries can be described by anr	•	•						
106	Average annual background	tive dose limit	1	ective dose limi	t	$\overline{\mathbf{S}}$	\odot	\odot	
	radiation in UK		member of the public for radiation w				\smile	\bigcirc	0
	2·2 mSv		1 mSv 20 mSv						
	Applications of nuclear radiation in	nclude:							
	Electricity Generation by Nucl		C	ancer Treatn	nent				
	Nuclear Fission Power St								
	Nuclear Fusion to create e								
107	Medical Uses Industrial Uses						$\overline{\mbox{\scriptsize (i)}}$	\odot	\odot
	Sterilisation e.g. gamma rays kill b	pacteria					\bigcirc	\bigcirc	•
	Tracers		Measuring thickness of paper						
	Tracers to map movement and/or leaks								
	Half-life is defined as:								
108	acti	ivity]				$\overline{\mbox{i}}$	\bigcirc	\odot
100	The time taken for the -	, rected count r	d count rate				\bigcirc	Θ	0
	Use of graphical data to determine the half-life of a radioactive material.								
	tte)								
	corrected count rate			Taka any haly	ing				
	B B Cted			Take any halv of the correct	-				
	2 0 70 - X			count rate c					
	60			the y-axis.					
	50			the y-axis.					
	N N			Work out th	ie		\odot	\odot	
109a	count rate	\mathbf{X}		time interva			$\overline{\mbox{\scriptsize ($)}}$	☺	\odot
	halves			on the x-ax	is				
	from 40 20	••••		for this halvi	ng.				
	10								
	o	•		From the gra	ph:				
	0 5 10	15 20 25 30 <i>time</i> (minut	35 tes)	alf Life = 10 mi	inutos				
		<u>Time Interval</u> 22-12minutes	- H	an Life - 10 Mi	inutes				
		22-12minutes 10 minutes							

	Use numerical data to determir	e the half-life of a	radioactive m	aterial						
109b	A radioactive source has an initial activity of 400 kBq. After 15 days the activity of the source is 50 kBq. The half-life of the source is $400 \rightarrow 200 \rightarrow 100 \rightarrow 50$ No. of half-lives = 3 If 1 half-life = 15 days 3 half-lives = 3x15 days = 45days	The source has a hours. The initial a	half-life of 24 activity of the ater. $S = \frac{96}{24} = 4$ Bq $\rightarrow 11 \rightarrow 5.5$	Determine sample decrease original 39 hours $1 \rightarrow$ No. of h If 3 half-	for the acti e to one eig value over s $1/_2 \rightarrow$ alf-lives = 3	vity to ghth of its a period of $1/_4 \rightarrow 1/_8$ hours hours	\otimes		٢	
110	The half-life of a radioactive ma radioactive Geiger-Müller co tube	8	:	٢						
111	 Nuclear fission is when a large nucleus of an atom splits into two or more smaller nuclei. Induced nuclear fission happens when neutrons are used to bombard a uranium nucleus a neutron is absorbed but the nucleus becomes unstable this unstable nucleus splits into two (or more) smaller nuclei neutrons are also released in the fission reaction and those neutrons can go on and split more nuclei. this process is called a chain reaction & heat is given off. If the number of neutrons released is controlled the fission reaction continues at a steady rate and this is the process in nuclear reactors in power generation If the number of neutrons released is left to increase, the fission reaction increases in rate until it explodes. This is the process in a nuclear bomb. 							٢	٢	
112	 During a nuclear fusion reaction two nuclei of smaller mass number combine to produce a nucleus of larger mass number. Nuclear fusion reactions take place at very high temperatures fusion reactions are important because they can release energy plasma containment is required to sustain nuclear fusion reactions in a reactor requires strong magnetic fields 							٢	٢	
	National 5 Physics Unit 6b							iffic Li		
No.	Radiation: Units, Prefixes and Scientific Notation							Amber	Green	
113	SI Units are often used with the Prefix nand Symbol n Meaning x10	following prefixes: μ micro mill μ M	i kilo k	mega M x10 ⁶	giga G x10 ⁹		3	۲ ۲	©	
114	The appropriate number of significant figures must be used in the final answer.								:	
115	Scientific notation is often used 0.0004686 468400000 Scientific notation has a number great	in scientific notat	tion is 4	.68x10 ⁸	(3 SIG FIG) (3 SIG FIG) by 10 ^x where	X is an integer.	8	:	٢	