National 5

Physics

Self-Evaluation Summary

Unit	Section	No of Pages	Pages		
1	Dynamics	5	1	\rightarrow	5
2	Space	3	6	\rightarrow	8
3	Electricity	6	9	\rightarrow	14
4	Properties of Matter	3	15	\rightarrow	17
5	Waves	3	18	\rightarrow	20
6	Radiation	3	21	\rightarrow	23

No.	National 5 Physics Unit 1b Dynamics: Velocity-Time Graphs				Traffic Light		
					$\stackrel{\square}{\sim}$	E	¢
	Velocity-time or speed-time graphs can be drawn and/or interpreted. - Straight horizontal line indicates constant velocity - Straight uphill line (i.e. positive gradient) indicates constant acceleration - Straight downhill line (i.e. negative gradient) indicates constant deceleration				()	-	-
		$\mathrm{O} \rightarrow \mathrm{P}$ Constant acceleration (higher than $\mathrm{Q} \rightarrow \mathrm{R}$) $\mathrm{P} \rightarrow \mathrm{Q}$ Constant velocity $\mathrm{Q} \rightarrow \mathrm{R}$ Constant acceleration (lower than $\mathrm{O} \rightarrow \mathrm{P}$) $\mathrm{R} \rightarrow \mathrm{S}$ Constant velocity $\mathrm{S} \rightarrow \mathrm{T}$ Constant acceleration (highest as steepest) $\mathrm{T} \rightarrow \mathrm{U}$ Negative acceleration (deceleration)					
10	Displacement can be determined from the area under a velocity-time graph.				(-	-

No.	National 5 Physics Unit 1c Dynamics: Acceleration			Traffic Light		
				¢	旁	¢
12	Acceleration is the change on velocity per unit time. The equation for calculating acceleration is: $a=\frac{v-u}{t}$ e.g. Calculate the acceleration of a car which has an initial speed of $5 \mathrm{~m} \mathrm{~s}^{-1}$ and accelerated over a period of 20 s to a final speed of $45 \mathrm{~m} \mathrm{~s}^{-1}$ $a=\text { ? }$ $\begin{gathered} \quad \begin{array}{c} v=45 \mathrm{~m} \mathrm{~s}^{-1} \\ \mathrm{a}= \\ =\frac{v-\mathrm{u}}{\mathrm{t}}=\frac{45-5}{\mathrm{~m} \mathrm{~s}^{-1}} \\ 20 \end{array}=2.0 \mathrm{~m} \mathrm{~s}^{-2} \end{gathered}$ $\mathrm{t}=20 \mathrm{~s}$			(-	-
13	Determination of acceleration from a velocity-tim - acceleration $a=$ gradient of the line on a	e graph.	$\begin{aligned} & \frac{1}{t 25 \text { seconds: }} \begin{array}{l} \frac{y_{1}}{x_{1}} \\ 0.0 \\ 0 \end{array} \\ & s^{-2} \end{aligned}$	(-	-
14	Acceleration can be calculated using the following	experiment: Acceleration can be measured by: - Measuring the initial velocity (u) of the tolley as it passes through light gate X - Measuring the final velocity (v) of the trolley as it passes through light gate Y - The time taken (t) is measured with a stopwatch	Acceleration is calculated using the equation $a=\frac{v-u}{t}$:	-	\bigcirc

No.	National 5 Physics Unit 1e Dynamics: Energy

Energy cannot be created or destroyed. Energy can only be converted from one form of energy to another and energy can then be transferred.
Work done is a measure of the energy required to move an object through a distance.

- Work done can have the symbol E_{w} or W.

$$
\mathrm{E}_{\mathrm{w}}=\mathrm{Fd}
$$

Symbol	Quantity	Unit
E_{w}	Work Done	J
F	Unbalanced Force	N
d	distance/displacement	m

Traffic Light		
\%	年	
*	\bigcirc	©
*	\bigcirc	-

e.g. A car of mass 1200 kg is travelling along a straight level road at a constant speed.

The driving force on the car is 2500 N as it drives over a 50 m stretch of road.
Calculate the work done moving the car over this stretch of road?

| $E_{w}=?$ | $E_{w}=F$ | d | |
| :--- | :--- | :--- | :---: | :---: |
| $F=2500 \mathrm{~N}$ | $E_{w}=2500$ | x | 50 |
| $d=50 \mathrm{~m}$ | $E_{w}=125000 \mathrm{~J}$ | | |

Gravitational potential energy is the energy an object has by virtue of its position above the surface of the Earth. Gravitational potential energy problems can be solved using the equation:

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}
$$

Symbol	Quantity	Unit
E_{p}	Gravitational Potential Energy	J
m	Mass of object	kg
g	Gravitational field strength	$\mathrm{N} \mathrm{kg}^{-1}$
h	Height of object	m

e.g. An inflatable raft is dropped from an aircraft into the sea from a height of 250 m as part of a rescue. Calculate the gravitational potential energy the raft has just as it is dropped from the aircraft if its mass is 60 kg .

$\mathrm{E}_{\mathrm{p}}=$?	$\mathrm{m}=60 \mathrm{~kg}$	E_{p}	m		g		h
$\mathrm{g}=9.8 \mathrm{~N} \mathrm{~kg}^{-1}$	$\mathrm{h}=250 \mathrm{~m}$	E_{p}	60	x	9.8	x	25
$\mathrm{g}=9.8 \mathrm{Nkg}$	$\mathrm{h}=250 \mathrm{~m}$. 47				

Kinetic energy is the energy an object possesses by virtue of its movement.

- The greater the mass and the speed of the object the greater its kinetic energy.
- Kinetic energy problems are solved using the following equation:

$$
E_{k}=\frac{1}{2} m v^{2}
$$

Symbol	Quantity	Unit
E_{k}	Kinetic Energy	J
m	Mass	kg
v	Velocity	$\mathrm{m} \mathrm{s}^{-1}$

e.g. after passing Jupiter, New Horizons was travelling at a speed of $23.0 \mathrm{~km} \mathrm{~s}^{-1}$. The mass of New Horizons space probe is 454 kg . Calculate the kinetic energy of New Horizons space probe.
$\mathrm{E}_{\mathrm{k}}=$?
$E_{k}=\frac{1}{2}$
$E_{k}=\frac{1}{2} \quad x \quad 454 \quad x \quad(23000)^{2}$
$\mathrm{m}=454 \mathrm{~kg}$
$E_{k}=1.20 \times 10^{11} \mathrm{~J}$

Use the following relationships to solve problems involving conservation of energy.
$\mathrm{E}_{\mathrm{w}}=\mathrm{Fd}$ or $\mathrm{W}=\mathrm{Fd}$
$E_{p}=m g h$
$E_{k}=\frac{1}{2} m v^{2}$
e.g. A ball is dropped from a height of 5.0 m to the ground. If the ball has a mass of 0.5 kg ,
calculate the velocity the ball hits the ground at assuming no air resistance.

```
\(\mathrm{E}_{\mathrm{p}}=\) ? \(\mathrm{m}=0.5 \mathrm{~kg} \quad \mathrm{~g}=9.8 \mathrm{~N} \mathrm{~kg}^{-1} \quad \mathrm{~h}=5.0 \mathrm{~m}\)
\(E_{p}=m g h\)
    \(=0.5 \times 9.8 \times 5.0\)
    \(=24.5 \mathrm{~J}\)
```



```
\(=0.5 \times 9.8 \times 5.0\)
\(=24.5 \mathrm{~J}\)
```


Awareness of the risks associated with manned space exploration:

- huge amounts of energy required to get into orbit and the heavier the spacecraft the more fuel needed on take-off and increases the risks.
- potential exposure to high levels of radiation and cosmic rays unprotected away from Earth.

37 - pressure differential between the vacuum of space and inside spacecraft can lead to accidents.

- re-entry through an atmosphere will lead to very high temperatures on spacecraft surface.
- very small objects moving a high speed can damage spacecraft.
- extremes of temperature (hot in sun, cold in shade) must be worked into the design of spacecraft

Knowledge of Newton's Laws and their application to space travel, rocket launch and landing.
"An object will remain at rest or continue to travel with constant speed, and in the same direction, unless acted upon by an unbalanced force"

Newton's Second Law

"The acceleration of a body is
38 proportional to the unbalanced force acting upon it and inversely proportion to the objects mass"

Newton's Third Law

 "If object A exerts a force on object B, then object B exerts an equal and opposite force on object A"Newton's First Law \quad Once a spacecraft is moving in the vacuum of space it will continue to move and will not slow down.

- Fuel will accelerate the spacecraft to the required velocity and once the engines are switched off the velocity will remain constant.
- Thrust must be provided to slow or halt the motion of a spacecraft as there is no frictional force to assist with this process.

On take off, the acceleration of the rocket is determined

- using $F=m a$, where F is the unbalanced force
- where Unbalanced Force = Thrust - Weight

Large quantities of fuel are required to launch a spacecraft and the mass of the spacecraft will decrease as the fuel is used up. This will increase the acceleration of the spacecraft.
Releasing or ejecting any part of a spacecraft will result in this equal and opposite force on the remaining spacecraft.
The forces will be balanced and the force of the jettisoned section will be balanced by an equal force on the spacecraft in the opposite direction. This will cause an acceleration in the spacecraft which will alter the velocity of the spacecraft.

Weight, mass and gravitational field strength can be worked out using the relationship W = m g

- Mass, in kg, is the same regardless of the gravitational field strength

39 As gravitational Field Strength is different in different locations across the universe, care must be taken to use the correct value of Gravitational Field Strength.
Calculate the weight of an individual with mass 71 kg on a) Earth, b) Moon and c) Mars.
a) Earth ($\mathrm{g}=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$)

$$
\begin{aligned}
\mathrm{W} & =\mathrm{mg} \\
& =71 \times 9.81 \\
& =697 \mathrm{~N}
\end{aligned}
$$

b) Moon (where $g=1.6 \mathrm{~N} \mathrm{~kg}^{-1}$)

$$
\begin{aligned}
\mathrm{W} & =\mathrm{mg} \\
& =71 \times 1.6 \\
& =114 \mathrm{~N}
\end{aligned}
$$

c) Mars (where $\mathrm{g}=3.7 \mathrm{~N} \mathrm{~kg}^{-1}$)

$$
\begin{aligned}
\mathrm{W} & =\mathrm{mg} \\
& =71 \times 3.7 \\
& =263 \mathrm{~N}
\end{aligned}
$$

\section*{| No. | National 5 Physics Unit 4b |
| :---: | :---: |
| Properties of Matter: Specific Latent Heat | |}

Different materials require different quantities of heat to change physical state per unit mass.
73 Different quantities of heat are required to change the state
74 - from solid to liquid (fusion) e.g. specific latent heat of fusion of water $=3.34 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$ - from liquid to gas (vaporisation) e.g. specific latent heat of vaporisation of water $=22.6 \times 10^{5} \mathrm{Jkg}^{-1}$ Calculations involving mass, heat energy and specific latent heat use the equation:

E_{h}	$=$	$\mathrm{m}_{\text {Heat Energy }}$
(J)	Mass	l
		Specific latent heat
$\left(\mathrm{J} \mathrm{kg}^{-1}\right)$		

75 e.g. What is the minimum amount of energy required to change 0.5 kg of water at its boiling point into steam at the same temperature?

E_{h}	$=m$		l
E_{h}	$=0.5$	x	22.6
E_{h}	$=11.3 \mathrm{~J}$		

81a	The Boyle's Law relationship of pressure and volume at a constant temperature is represented				\bigcirc	
	$\begin{array}{\|l\|l\|l\|c\|} \hline p_{1} \mathrm{~V}_{1}=p_{2} \mathrm{~V}_{2} & \begin{array}{l} p_{1}=1.0 \times 10^{5} \mathrm{~Pa} \\ p_{2}=? \end{array} & \mathrm{~V}_{1}=4.0 \times 10^{-4} \mathrm{~m}^{3} & \begin{array}{c} \text { same } \\ \text { temperature } \end{array} \\ \hline p_{2} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2} \therefore 1.6 \times 10^{-4} \mathrm{~m}^{3} & \therefore 1.0 \times 10^{5} \times 4.0 \times 10^{-4}=p_{2} \times 1.6 \times 10^{-4} \therefore p_{2}=\frac{1.0 \times 10^{5} \times 4.0 \times 10^{-4}}{1.6 \times 10^{-4}}=2.5 \times 10^{5} \mathrm{~Pa} \end{array}$					
81b	The Gay-Lussac's Law relationship of pressure and temperature at a constant volume is represented by:$\begin{gathered} \frac{p_{1}}{\mathrm{~T}_{1}}=\frac{\boldsymbol{p}_{2}}{\mathrm{~T}_{2}} \quad \begin{array}{\|l\|l\|} \hline p_{1}=150 \mathrm{kPa} & \mathrm{~T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K} \\ \hline p_{2}=? & \text { same } \\ \text { volume } \end{array} \\ \frac{\mathrm{p}_{2}=47^{\circ} \mathrm{C}=330 \mathrm{~K}}{\mathrm{~T}_{1}}=\frac{p_{2}}{\mathrm{~T}_{2}} \quad \therefore \frac{150}{300}=\frac{p_{2}}{330} \quad \therefore \quad \end{gathered} p_{2}=\frac{150 \times 330}{300}=165 \mathrm{kPa} .$					
81c	The Charles' Law relationship of volume and temperature at a constant temperature is represented by:$\begin{array}{rl\|l\|} \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \quad \begin{array}{ll} \mathrm{V}_{1}=0.3 \mathrm{~m}^{3} & \mathrm{~T}_{1}=20^{\circ} \mathrm{C}=293 \mathrm{~K} \\ \text { same } \\ \text { pressure } \end{array} \\ \hline \frac{\mathrm{V}_{2}=?}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \quad \therefore \frac{0.3}{293}=\frac{\mathrm{V}_{2}}{323} \quad \therefore & \mathrm{~V}_{2}=\frac{0.3 \times 323 \mathrm{~K}}{293}=0.33 \mathrm{~m}^{3} \end{array}$					
81d	Pressure, volume and temperature are linked by the following relationship:$\begin{array}{ll\|l} \frac{p V}{T}=\text { constant } \begin{array}{lll} p_{1}=6.0 \times 10^{5} \mathrm{~Pa} & \mathrm{~V}_{1}=2.5 \mathrm{~m}^{3} & \mathrm{~T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K} \\ p_{2}=? & \mathrm{~V}_{2}=5.0 \mathrm{~m}^{3} & \mathrm{~T}_{2}=54^{\circ} \mathrm{C}=327 \mathrm{~K} \\ \hline \frac{p_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\text { constant } \therefore \frac{6.0 \times 10^{5} \times 2.5}{300}=5000=\text { constant } & \\ \frac{p_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}=\text { constant } \therefore \frac{p_{2} \times 5.0}{327}=5000 \therefore p_{2}=\frac{5000 \times 327}{5.0}=3.3 \times 10^{5} \mathrm{~Pa} \end{array} \end{array}$					
82	Description of experiments to verify law (Gay-Lussac's law) and the vol a) Pressure-Volume Law (Boyle's Law) Watch this BBC Bitesize video The piston on the syringe can be used to change the volume of the gas in the syringe. The pressure inside the syringe is measured by the pressure sensor. The volume of the gas in the syringe could be halved and the pressure sensor would measure the resulting doubling of the pressure in the syringe.	fy the pressure-volume law (Boyle' ume-temperature law (Charles' law). b) Pressure-Temperature Law (Gay-Lussac's Law) Watch this BBC Bitesize video The oil in the beaker is slowly heated and the pressure is measured on the pressure sensor at a series of increasing temperatures (measured in Kelvin). As the volume is fixed in the sealed container, the ratio of pressure/temperature should be constant.	s law), the pressure-temperature). c) Volume-Temperature Law (Charles' Law) Watch this BBC Bitesize video The beaker is heated and the volume in the sealed container should start to expand. The piston moves up the container to equalised pressure inside and outside the container. The volumes in the sealed container and measured against the temperatures in Kelvin and the ratio of volume/temperature should be constant.			

	National 5 Physics Unit 5a Waves: Parameters \& Behaviours				Traffic Light		
No.					$\stackrel{\rightharpoonup}{*}$	年	¢
83	Waves transfer energy. The higher the amplitude of the wave, the more energy is transferred						
$\begin{aligned} & 84 a \\ & 85 a \end{aligned}$	Definition of transverse waves. Transverse waves have the direction of vibration at right angles to the direction of wave travel e.g. water waves and electromagnetic waves.				\bigcirc	-	-
	frequency (f) number of waves that pass a point in one second. wavelength (λ) horizontal distance between any two corresponding points on adjacent waves. amplitude vertical distance measured from the middle of the wave to the top or to the bottom. Independent of wavelength	Wav 1 e	$\stackrel{\text { length }}{\text { lit }}$	$V^{\text {amplitude }}$			
$\begin{aligned} & 84 b \\ & 85 b \end{aligned}$	Longitudinal waves have the direction of the vibration in the same direction as the direction of the wave e.g. sound waves. - The wavelength can be calculated from the number of complete waves over a distance.				\bigcirc	-	-
86a	Speed, distance and time problems can be solved using th $v=\frac{d}{t}$	the followinSymbol l d d	equation: Quantity speed distance time	Unit ms^{-1} m s	\bigcirc	\bigcirc	-
86b	Frequency, number of waves and time problems can be $f=\frac{N}{t}$	solved usingSymbol f N T	the followin Quantity frequency mber of wave time		©	-	-
87c	Speed, frequency and wavelength problems can be solved $v=f \lambda$	ed using the Symbol v f	ollowing eq Quantity speed frequency wavelength	Uation: Unit ms^{-1} Hz m	\%	\cdots	-
87d	Time and frequency problems can be solved using the foll $t=\frac{1}{f}$	llowing equaticSymbol t f	tion: Quantity Period frequency	Unit s Hz	\bigcirc	\bigcirc	-
87 88 89		Wavelength must be same before and after barrier. Wave curl at the corners after barrier			:	\bigcirc	-

	National 5 Physics Unit 5b Waves: Electromagnetic Spectrum									Traffic Light		
No.										Tra	皆	
	Knowledge of the relative		证 frequency and wavelength of bands of the electromagnetic spectrum.							\bigcirc	-	©
	EM Type	Gamma	X-Ray	Ultra-violet	- Visible	Infra-R		Microwave	Radio \& TV			
	Energy	High	\longleftarrow Low									
	Frequency	High		LowHigh								
	Wavelength	Low	4									
	Knowledge of typical sources, detectors and applications for each band in the electromagnetic spectrum.									\bigcirc	\bigcirc	
	Em Type	Gamma		Ultraviolet	Visible	Infra-Re		Microwave	Radio \& TV			
	Sources	Nuclear decay, Cosmic rays, Some stars. Some stars		$\begin{aligned} & \text { Ultra-hot objects, } \\ & \text { Sparks, } \\ & \text { Stars } \end{aligned}$	Ver hot obiects, Staright	All hot objectsStarlight		$\begin{gathered} \text { Electricial } \\ \text { Circuits } \\ \text { Some stars } \end{gathered}$	$\begin{gathered} \text { Electricial } \\ \text { Coricuits } \\ \text { Some stars } \end{gathered}$			
	Detectors	Photographic film, GM Film	$\begin{aligned} & \text { Photographic } \\ & \text { film } \end{aligned}$	$\begin{gathered} \text { Causes } \\ \text { Fluorescence, } \\ \text { film } \end{gathered}$	$\begin{gathered} \text { Photographic film } \\ \text { LDR } \end{gathered}$	$m \mathrm{c}$		aerial	aerial			-
	Applications	Killing Cancer Cells, Sterilising equipment	$\begin{array}{\|c\|c\|} \hline \text { Medical } \\ \text { imaging of } \\ \text { bones } \end{array}$	$\underset{\text { Killing bacteria }}{\substack{\text { Sunbeds, }}}$	$\begin{gathered} \text { Seeing, } \\ \text { Photography, } \\ \text { Lasers } \end{gathered}$	"Night" vision, Remote Controls		Cooking, Mobile Phon signals	$\begin{array}{l\|l} \text { e } & \begin{array}{l} \text { Communications, } \\ \text { Television Signals } \end{array} \end{array}$			
9	Knowledge that all radiations in the electromagnetic spectrum are transverse and travel at the speed of light. All forms of Electromagnetic Radiation are transverse waves.									\bigcirc	\bigcirc	
	Gamma	a X-Ray	Ultra-v	violet vis	Visible In	Infra-Red		crowave	Radio \& TV			
	All travel at the speed of light ($3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$)											(

No.	National 5 Physics Unit 5 Waves: Refraction of Light			Traffic Light		
				문	㐫	¢
93	Refraction occurs when waves pass from one medium to another. e.g. glass into air, air into water, air into perspex plastic			\bigcirc	-	-
Description of refraction in terms of change of wave speed, change in wavelength and change of direction (where the angle of incidence is greater than 0°), for waves passing into both a more dense and a less dense medium.				\bigcirc	-	-
94	Property	Less Dense medium More Dense Medium e.g. air \rightarrow glass	More Dense medium \downarrow Less Dense Medium e.g. glass \rightarrow air			
	Wave Speed	deceases	increases			
	Change in Wavelength	deceases	increases			
	Change of Direction	bends towards the normal	bends away the normal			
	Frequency	same	same			
	Colour of Light	same	same			
95	Identification of the normal, angle of incidence and angle of refraction in ray diagrams showing refraction.					
				©	-	-

109b	Use numerical data to determine the half-life of a radioactive material.						®)	-	-
	$\begin{array}{\|\|l\|l\|} \hline \text { A radioactive source has an } \\ \text { initial activity of } 400 \mathrm{kBq} \text {. } \\ \text { After } 15 \text { days the activity of the } \\ \text { source is } 50 \mathrm{kBq} \text {. } \\ \text { The half-life of the source is } \\ \hline 400 \rightarrow 200 \rightarrow 100 \rightarrow 50 \\ \text { No. of half-lives }=3 \\ \text { If } 1 \text { half-life }=15 \text { days } \\ 3 \text { half-lives }=3 \times 15 \text { days } \\ =45 \text { days } \end{array}$	The sourc hours. The source is 88 Determine source 96 No. of h Initial Activ $88 \rightarrow 44$ Activity aft	has a half itial ac kBq. he activit urs lat -lives $=$ $=88 \mathrm{kB}$ $\rightarrow 22$ 4 half-li	fe of 24 y of the of the $\frac{6}{4}=4$	Determ sample decreas original 39 hours $1 \rightarrow$ No. of If 3 half 1 half	the the o one lue ov $1 / 2$ -lives es = e =			
110			Measure the count in a set time interval Repeat at (regular) intervals Measure background (count) and subtract				¢)	\odot	(-)
111	Nuclear fission is when a large nucleus of an atom splits into two or more smaller nuclei. - Induced nuclear fission happens when neutrons are used to bombard a uranium nucleus - a neutron is absorbed but the nucleus becomes unstable - this unstable nucleus splits into two (or more) smaller nuclei - neutrons are also released in the fission reaction and those neutrons can go on and split more nuclei. - this process is called a chain reaction \& heat is given off. - If the number of neutrons released is controlled the fission reaction continues at a steady rate and this is the process in nuclear reactors in power generation - If the number of neutrons released is left to increase, the fission reaction increases in rate until it explodes. This is the process in a nuclear bomb.						©	\because	(-)
112	During a nuclear fusion reaction two nuclei of smaller mass number combine to produce a nucleus of larger mass number. - Nuclear fusion reactions take place at very high temperatures - fusion reactions are important because they can release energy plasma containment is required to sustain nuclear fusion reactions in a reactor requires strong magnetic fields						()	\odot	-
	National 5 Physics Unit 6b Radiation: Units, Prefixes and Scientific Notation							fic Li	
No.							$\stackrel{\rightharpoonup}{\otimes}$	¢	¢
113	SI Units are often used with the following prefixes:						¢)	\because	-
	Prefix ${ }^{\text {nano- }}$	- micro	milli	kilo	mega	giga			
	Symbol n	μ	M	k	M	G			
	Meaning $\times 10^{-9}$	x10 ${ }^{-6}$	x10 ${ }^{-3}$	x10 ${ }^{3}$	x10 ${ }^{6}$	$\times 10^{9}$			
114	The appropriate number of significant figures must be used in the final answer. - the final answer can have no more significant figures than the value with the least number of significant figures used in the calculation.						¢)	\because	-)
115	$\begin{aligned} & 0.0004686 \\ & 468400000 \end{aligned}$	in calculat in scientif in scientif than or equ	s e.g. notatio notatio to one b	4.69 4.6 s than 10	$\begin{aligned} & 4.69 \times 10^{-4} \\ & 4.68 \times 10^{8} \end{aligned}$	SIG FIG) SIG FIG) 10^{x} wh	¢	\odot	-

